博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转载+整理)超详细的cmake教程
阅读量:3906 次
发布时间:2019-05-23

本文共 15131 字,大约阅读时间需要 50 分钟。

cmake教程

参考

  • (推荐)

注:本文主要内容来源于第一篇博客,所以转载的原地址仍然是第一篇的地址。在此基础上,有从其他博客文章学习进行总结,将基础性的语法知识进行合并,供日后复习参考。

什么是cmake

cmake允许开发者编写一种平台无关的 CMakeList.txt 文件来定制整个编译流程,然后再根据目标用户的平台进一步生成所需的本地化 Makefile 和工程文件,如 Unix 的 Makefile 或 Windows 的 Visual Studio 工程。从而做到“Write once, run everywhere”。显然,CMake 是一个比上述几种 make 更高级的编译配置工具。一些使用 CMake 作为项目架构系统的知名开源项目有 VTK、ITK、KDE、OpenCV、OSG 等。

在 linux 平台下使用 CMake 生成 Makefile 并编译的流程如下:

  • 编写 CMake 配置文件 CMakeLists.txt 。
  • 执行命令 cmake PATH 或者 ccmake PATH 生成 Makefile (ccmake 和 cmake 的区别在于前者提供了一个交互式的界面)。其中, PATH 是 CMakeLists.txt 所在的目录。
  • 使用 make 命令进行编译。

你或许听过好几种 Make 工具,例如 ,QT 的 ,微软的 ,,,等等。这些 Make 工具遵循着不同的规范和标准,所执行的 Makefile 格式也千差万别。这样就带来了一个严峻的问题:如果软件想跨平台,必须要保证能够在不同平台编译。而如果使用上面的 Make 工具,就得为每一种标准写一次 Makefile ,这将是一件让人抓狂的工作。

CMake就是针对上面问题所设计的工具.

本文将从实例入手,一步步讲解 CMake 的常见用法,文中所有的可以在这里找到。

cmake 常见语法罗列

CMakeLists.txt 的语法比较简单,由命令、注释和空格组成,其中命令是不区分大小写的,符号"#"后面的内容被认为是注释。命令由命令名称、小括号和参数组成,参数之间使用空格进行间隔。

  • PROJECT(hello_cmake):该命令表示项目的名称是 hello_cmake。
    CMake构建包含一个项目名称,上面的命令会自动生成一些变量,在使用多个项目时引用某些变量会更加容易。比如生成了: PROJECT_NAME 这个变量。
    PROJECT_NAME是变量名,${PROJECT_NAME}是变量值,值为hello_cmake
  • CMAKE_MINIMUM_REQUIRED(VERSION 2.6) :限定了 CMake 的版本。
  • AUX_SOURCE_DIRECTORY(< dir > < variable >)AUX_SOURCE_DIRECTORY ( . DIR_SRCS):将当前目录中的源文件名称赋值给变量 DIR_SRCS
  • ADD_SUBDIRECTORY(src): 指明本项目包含一个子目录 src
  • SET(SOURCES src/Hello.cpp src/main.cpp):创建一个变量,名字叫SOURCE。它包含了这些cpp文件。
  • ADD_EXECUTABLE(main ${SOURCES }):指示变量 SOURCES 中的源文件需要编译 成一个名称为 main 的可执行文件。 ADD_EXECUTABLE() 函数的第一个参数是可执行文件名,第二个参数是要编译的源文件列表。因为这里定义了SOURCE变量,所以就不需要罗列cpp文件了。等价于命令:ADD_EXECUTABLE(main src/Hello.cpp src/main.cpp)
  • ADD_LIBRARY(hello_library STATIC src/Hello.cpp):用于从某些源文件创建一个库,默认生成在构建文件夹。在add_library调用中包含了源文件,用于创建名称为libhello_library.a的静态库。
  • TARGET_LINK_LIBRARIES( main Test ):指明可执行文件 main 需要连接一个名为Test的链接库。添加链接库。
  • TARGET_INCLUDE_DIRECTORIES(hello_library PUBLIC ${PROJECT_SOURCE_DIR}/include):添加了一个目录,这个目录是库所包含的头文件的目录,并设置库属性为。
  • MESSAGE(STATUS “Using bundled Findlibdb.cmake…”):命令 MESSAGE 会将参数的内容输出到终端。
  • FIND_PATH () :指明头文件查找的路径,原型如下:find_path(< VAR > name1 [path1 path2 ...]) 该命令在参数 path* 指示的目录中查找文件 name1 并将查找到的路径保存在变量 VAR 中。
  • FIND_LIBRARY(): 同 FIND_PATH 类似,用于查找链接库并将结果保存在变量中。

CMake可用变量

CMake语法指定了许多变量,可用于帮助您在项目或源代码树中找到有用的目录。 其中一些包括:

Variable Info
CMAKE_SOURCE_DIR 根源代码目录,工程顶层目录。暂认为就是PROJECT_SOURCE_DIR
CMAKE_CURRENT_SOURCE_DIR 当前处理的 CMakeLists.txt 所在的路径
PROJECT_SOURCE_DIR 工程顶层目录
CMAKE_BINARY_DIR 运行cmake的目录。外部构建时就是build目录
CMAKE_CURRENT_BINARY_DIR The build directory you are currently in.当前所在build目录
PROJECT_BINARY_DIR 暂认为就是CMAKE_BINARY_DIR

想仔细体会一下,可以在CMakeLists中,利用message()命令输出一下这些变量。

另外,这些变量不仅可以在CMakeLists中使用,同样可以在源代码.cpp中使用。

入门案例

单个源文件

本节对应的源代码所在目录:。

对于简单的项目,只需要写几行代码就可以了。例如,假设现在我们的项目中只有一个源文件 main.cc ,该程序的用途是计算一个数的指数幂。

#include 
#include
double power(double base, int exponent){
int result = base; int i; if (exponent == 0) {
return 1; } for(i = 1; i < exponent; ++i){
result = result * base; } return result;}int main(int argc, char *argv[]){
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]); return 1; } double base = atof(argv[1]); int exponent = atoi(argv[2]); double result = power(base, exponent); printf("%g ^ %d is %g\n", base, exponent, result); return 0;}

编写 CMakeLists.txt

首先编写 CMakeLists.txt 文件,并保存在与 main.cc 源文件同个目录下:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo1)# 指定生成目标add_executable(Demo main.cc)

CMakeLists.txt 的语法比较简单,由命令、注释和空格组成,其中命令是不区分大小写的。符号 # 后面的内容被认为是注释。命令由命令名称、小括号和参数组成,参数之间使用空格进行间隔

对于上面的 CMakeLists.txt 文件,依次出现了几个命令:

  • cmake_minimum_required:指定运行此配置文件所需的 CMake 的最低版本;
  • project:参数值是 Demo1,该命令表示项目的名称是 Demo1 。
  • add_executable: 将名为 main.cc 的源文件编译成一个名称为 Demo 的可执行文件。

编译项目

之后,在当前目录执行 cmake . ,得到 Makefile 后再使用 make 命令编译得到 Demo1 可执行文件。

多个源文件

同一目录,多个源文件

本小节对应的源代码所在目录:。

上面的例子只有单个源文件。现在假如把 power 函数单独写进一个名为 MathFunctions.c 的源文件里,使得这个工程变成如下的形式:

./Demo2|+--- main.cc|+--- MathFunctions.cc|+--- MathFunctions.h

这个时候,CMakeLists.txt 可以改成如下的形式:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo2)# 指定生成目标add_executable(Demo main.cc MathFunctions.cc)

唯一的改动只是在 add_executable 命令中增加了一个 MathFunctions.cc 源文件。这样写当然没什么问题,但是如果源文件很多,把所有源文件的名字都加进去将是一件烦人的工作。更省事的方法是使用 aux_source_directory 命令,该命令会查找指定目录下的所有源文件,然后将结果存进指定变量名。

其语法为 :aux_source_directory(<dir> <variable>)

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo2)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 指定生成目标add_executable(Demo ${
DIR_SRCS})

这样,CMake 会将当前目录所有源文件的文件名赋值给变量 DIR_SRCS ,再指示变量 DIR_SRCS 中的源文件需要编译成一个名称为 Demo 的可执行文件。

多个目录,多个源文件

本小节对应的源代码所在目录:。

现在进一步将 MathFunctions.h 和 MathFunctions.cc 文件移动到 math 目录下。

./Demo3|+--- main.cc|+--- math/|+---- MathFunctions.cc|+---- MathFunctions.h

对于这种情况,需要分别在项目根目录 Demo3 和 math 目录里各编写一个 CMakeLists.txt 文件。为了方便,我们可以先将 math 目录里的文件编译成静态库再由 main 函数调用。

根目录中的 CMakeLists.txt :

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo3)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 添加 math 子目录add_subdirectory(math)# 指定生成目标add_executable(Demo main.cc)# 添加链接库target_link_libraries(Demo MathFunctions)

该文件添加了下面的内容: 第3行,使用命令 add_subdirectory 指明本项目包含一个子目录 math,这样 math 目录下的 CMakeLists.txt 文件和源代码也会被处理 。第6行,使用命令 target_link_libraries 指明可执行文件 main 需要连接一个名为 MathFunctions 的链接库 。

子目录中的 CMakeLists.txt:

# 查找当前目录下的所有源文件# 并将名称保存到 DIR_LIB_SRCS 变量aux_source_directory(. DIR_LIB_SRCS)# 生成链接库add_library (MathFunctions ${
DIR_LIB_SRCS})

在该文件中使用命令 add_library 将 src 目录中的源文件编译为静态链接库。

进阶案例

自定义编译选项

本节对应的源代码所在目录:。

CMake 允许为项目增加编译选项,从而可以根据用户的环境和需求选择最合适的编译方案。
例如,可以将 MathFunctions 库设为一个可选的库,如果该选项为 ON ,就使用该库定义的数学函数来进行运算。否则就调用标准库中的数学函数库。
修改 CMakeLists 文件
我们要做的第一步是在顶层的 CMakeLists.txt 文件中添加该选项:

# CMake 最低版本号要求cmake_minimum_required (VERSION 2.8)# 项目信息project (Demo4)# 加入一个配置头文件,用于处理 CMake 对源码的设置configure_file ("${PROJECT_SOURCE_DIR}/config.h.in""${PROJECT_BINARY_DIR}/config.h")# 是否使用自己的 MathFunctions 库option (USE_MYMATH"Use provided math implementation" ON)# 是否加入 MathFunctions 库if (USE_MYMATH)include_directories ("${PROJECT_SOURCE_DIR}/math")add_subdirectory (math)set (EXTRA_LIBS ${
EXTRA_LIBS} MathFunctions)endif (USE_MYMATH)# 查找当前目录下的所有源文件# 并将名称保存到 DIR_SRCS 变量aux_source_directory(. DIR_SRCS)# 指定生成目标add_executable(Demo ${
DIR_SRCS})target_link_libraries (Demo ${
EXTRA_LIBS})

其中:

  • 第7行的 configure_file 命令用于加入一个配置头文件 config.h ,这个文件由 CMake 从 config.h.in 生成,通过这样的机制,将可以通过预定义一些参数和变量来控制代码的生成。
  • 第13行的 option 命令添加了一个 USE_MYMATH 选项,并且默认值为 ON 。
  • 第17行根据 USE_MYMATH 变量的值来决定是否使用我们自己编写的 MathFunctions 库。

修改 main.cc 文件

之后修改 main.cc 文件,让其根据 USE_MYMATH 的预定义值来决定是否调用标准库还是 MathFunctions 库:

#include 
#include
#include "config.h"#ifdef USE_MYMATH#include "math/MathFunctions.h"#else#include#endifint main(int argc, char *argv[]){
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]); return 1; } double base = atof(argv[1]); int exponent = atoi(argv[2]);#ifdef USE_MYMATH printf("Now we use our own Math library. \n"); double result = power(base, exponent);#else printf("Now we use the standard library. \n"); double result = pow(base, exponent);#endif printf("%g ^ %d is %g\n", base, exponent, result); return 0;}

编写 config.h.in 文件

上面的程序值得注意的是第3行,这里引用了一个 config.h 文件,这个文件预定义了 USE_MYMATH 的值。但我们并不直接编写这个文件,为了方便从 CMakeLists.txt 中导入配置,我们编写一个 config.h.in 文件,内容如下:

#cmakedefine USE_MYMATH

这样 CMake 会自动根据 CMakeLists 配置文件中的设置自动生成 config.h 文件。

编译项目

现在编译一下这个项目,为了便于交互式的选择该变量的值,可以使用 ccmake 命令 2 2也可以使用 cmake -i 命令,该命令会提供一个会话式的交互式配置界面:
在这里插入图片描述

从中可以找到刚刚定义的 USE_MYMATH 选项,按键盘的方向键可以在不同的选项窗口间跳转,按下 enter 键可以修改该选项。修改完成后可以按下 c 选项完成配置,之后再按 g 键确认生成 Makefile 。ccmake 的其他操作可以参考窗口下方给出的指令提示。

我们可以试试分别将 USE_MYMATH 设为 ON 和 OFF 得到的结果:

USE_MYMATH 为 ON
运行结果:

[ehome@xman Demo4]$ ./DemoNow we use our own MathFunctions library.7 ^ 3 = 343.00000010 ^ 5 = 100000.0000002 ^ 10 = 1024.000000

此时 config.h 的内容为:

#define USE_MYMATH

USE_MYMATH 为 OFF

运行结果:

[ehome@xman Demo4]$ ./DemoNow we use the standard library.7 ^ 3 = 343.00000010 ^ 5 = 100000.0000002 ^ 10 = 1024.000000

此时 config.h 的内容为:

/* #undef USE_MYMATH */

指定安装和测试

本节对应的源代码所在目录:。

CMake 也可以指定安装规则,以及添加测试。这两个功能分别可以通过在产生 Makefile 后使用 make install 和 make test 来执行。在以前的 GNU Makefile 里,你可能需要为此编写 install 和 test 两个伪目标和相应的规则,但在 CMake 里,这样的工作同样只需要简单的调用几条命令。

定制安装规则

首先先在 math/CMakeLists.txt 文件里添加下面两行:

# 指定 MathFunctions 库的安装路径install (TARGETS MathFunctions DESTINATION bin)install (FILES MathFunctions.h DESTINATION include)

指明 MathFunctions 库的安装路径。之后同样修改根目录的 CMakeLists 文件,在末尾添加下面几行:

# 指定安装路径install (TARGETS Demo DESTINATION bin)install (FILES "${PROJECT_BINARY_DIR}/config.h"DESTINATION include)

通过上面的定制,生成的 Demo 文件和 MathFunctions 函数库 libMathFunctions.o 文件将会被复制到 /usr/local/bin 中,而 MathFunctions.h 和生成的 config.h 文件则会被复制到 /usr/local/include 中。我们可以验证一下3 3顺带一提的是,这里的 /usr/local/ 是默认安装到的根目录,可以通过修改 CMAKE_INSTALL_PREFIX 变量的值来指定这些文件应该拷贝到哪个根目录。:

[ehome@xman Demo5]$ sudo make install[ 50%] Built target MathFunctions[100%] Built target DemoInstall the project...-- Install configuration: ""-- Installing: /usr/local/bin/Demo-- Installing: /usr/local/include/config.h-- Installing: /usr/local/bin/libMathFunctions.a-- Up-to-date: /usr/local/include/MathFunctions.h[ehome@xman Demo5]$ ls /usr/local/binDemo libMathFunctions.a[ehome@xman Demo5]$ ls /usr/local/includeconfig.h MathFunctions.h

为工程添加测试

添加测试同样很简单。CMake 提供了一个称为 CTest 的测试工具。我们要做的只是在项目根目录的 CMakeLists 文件中调用一系列的 add_test 命令。

# 启用测试enable_testing()# 测试程序是否成功运行add_test (test_run Demo 5 2)# 测试帮助信息是否可以正常提示add_test (test_usage Demo)set_tests_properties (test_usagePROPERTIES PASS_REGULAR_EXPRESSION "Usage: .* base exponent")# 测试 5 的平方add_test (test_5_2 Demo 5 2)set_tests_properties (test_5_2PROPERTIES PASS_REGULAR_EXPRESSION "is 25")# 测试 10 的 5 次方add_test (test_10_5 Demo 10 5)set_tests_properties (test_10_5PROPERTIES PASS_REGULAR_EXPRESSION "is 100000")# 测试 2 的 10 次方add_test (test_2_10 Demo 2 10)set_tests_properties (test_2_10PROPERTIES PASS_REGULAR_EXPRESSION "is 1024")

上面的代码包含了四个测试。第一个测试 test_run 用来测试程序是否成功运行并返回 0 值。剩下的三个测试分别用来测试 5 的 平方、10 的 5 次方、2 的 10 次方是否都能得到正确的结果。其中 PASS_REGULAR_EXPRESSION 用来测试输出是否包含后面跟着的字符串。

让我们看看测试的结果:

[ehome@xman Demo5]$ make testRunning tests...Test project /home/ehome/Documents/programming/C/power/Demo5Start 1: test_run1/4 Test #1: test_run ......................... Passed 0.00 secStart 2: test_5_22/4 Test #2: test_5_2 ......................... Passed 0.00 secStart 3: test_10_53/4 Test #3: test_10_5 ........................ Passed 0.00 secStart 4: test_2_104/4 Test #4: test_2_10 ........................ Passed 0.00 sec100% tests passed, 0 tests failed out of 4Total Test time (real) = 0.01 sec

如果要测试更多的输入数据,像上面那样一个个写测试用例未免太繁琐。这时可以通过编写宏来实现:

# 定义一个宏,用来简化测试工作macro (do_test arg1 arg2 result)add_test (test_${
arg1}_${
arg2} Demo ${
arg1} ${
arg2})set_tests_properties (test_${
arg1}_${
arg2}PROPERTIES PASS_REGULAR_EXPRESSION ${
result})endmacro (do_test)# 使用该宏进行一系列的数据测试do_test (5 2 "is 25")do_test (10 5 "is 100000")do_test (2 10 "is 1024")

关于 CTest 的更详细的用法可以通过 man 1 ctest参考 CTest 的文档。

支持gdb

让 CMake 支持 gdb 的设置也很容易,只需要指定 Debug 模式下开启 -g 选项,之后可以直接对生成的程序使用 gdb 来调试。

set(CMAKE_BUILD_TYPE "Debug")set(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} -O0 -Wall -g -ggdb")set(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall")

什么是gdb:

GDB是GNU开源组织发布的一个强大的UNIX下的程序调试工具。如果你是在 UNIX平台下做软件,你会发现GDB这个调试工具有比VC、BCB的图形化调试器更强大的功能。同时GDB也具有例如ddd这样的图形化的调试端。
一般来说,GDB主要完成下面四个方面的功能:
(1)启动你的程序,可以按照你的自定义的要求随心所欲的运行程序。
(2)可让被调试的程序在你所指定的调置的断点处停住。(断点可以是条件表达式)
(3)当程序被停住时,可以检查此时你的程序中所发生的事。
(4)动态的改变你程序的执行环境。

添加环境检查

本节对应的源代码所在目录:。

有时候可能要对系统环境做点检查,例如要使用一个平台相关的特性的时候。在这个例子中,我们检查系统是否自带 pow 函数。如果带有 pow 函数,就使用它;否则使用我们定义的 power 函数。
添加 CheckFunctionExists 宏
首先在顶层 CMakeLists 文件中添加 CheckFunctionExists.cmake 宏,并调用 check_function_exists 命令测试链接器是否能够在链接阶段找到 pow 函数。

# 检查系统是否支持 pow 函数include (${
CMAKE_ROOT}/Modules/CheckFunctionExists.cmake)check_function_exists (pow HAVE_POW)

将上面这段代码放在 configure_file 命令前。

预定义相关宏变量
接下来修改 config.h.in 文件,预定义相关的宏变量。

// does the platform provide pow function?#cmakedefine HAVE_POW

在代码中使用宏和函数

最后一步是修改 main.cc ,在代码中使用宏和函数:

#ifdef HAVE_POWprintf("Now we use the standard library. \n");double result = pow(base, exponent);#elseprintf("Now we use our own Math library. \n");double result = power(base, exponent);#endif

添加版本

本节对应的源代码所在目录:。

给项目添加和维护版本号是一个好习惯,这样有利于用户了解每个版本的维护情况,并及时了解当前所用的版本是否过时,或是否可能出现不兼容的情况。
首先修改顶层 CMakeLists 文件,在 project 命令之后加入如下两行:

set (Demo_VERSION_MAJOR 1)set (Demo_VERSION_MINOR 0)

分别指定当前的项目的主版本号和副版本号。

之后,为了在代码中获取版本信息,我们可以修改 config.h.in 文件,添加两个预定义变量:

// the configured options and settings for Tutorial#define Demo_VERSION_MAJOR @Demo_VERSION_MAJOR@#define Demo_VERSION_MINOR @Demo_VERSION_MINOR@

这样就可以直接在代码中打印版本信息了:

// print version infoprintf("%s Version %d.%d\n",argv[0],Demo_VERSION_MAJOR,Demo_VERSION_MINOR);

生成安装包

本节对应的源代码所在目录:。

本节将学习如何配置生成各种平台上的安装包,包括二进制安装包和源码安装包。为了完成这个任务,我们需要用到 CPack ,它同样也是由 CMake 提供的一个工具,专门用于打包。
首先在顶层的 CMakeLists.txt 文件尾部添加下面几行:

# 构建一个 CPack 安装包include (InstallRequiredSystemLibraries)set (CPACK_RESOURCE_FILE_LICENSE "${CMAKE_CURRENT_SOURCE_DIR}/License.txt")set (CPACK_PACKAGE_VERSION_MAJOR "${Demo_VERSION_MAJOR}")set (CPACK_PACKAGE_VERSION_MINOR "${Demo_VERSION_MINOR}")include (CPack)

上面的代码做了以下几个工作:

  • 导入 InstallRequiredSystemLibraries 模块,以便之后导入 CPack 模块;
  • 设置一些 CPack 相关变量,包括版权信息和版本信息,其中版本信息用了上一节定义的版本号;
  • 导入 CPack 模块。

接下来的工作是像往常一样构建工程,并执行 cpack 命令。

  • 生成二进制安装包:
cpack -C CPackConfig.cmake
  • 生成源码安装包
cpack -C CPackSourceConfig.cmake

我们可以试一下。在生成项目后,执行 cpack -C CPackConfig.cmake 命令:

[ehome@xman Demo8]$ cpack -C CPackSourceConfig.cmakeCPack: Create package using STGZCPack: Install projectsCPack: - Run preinstall target for: Demo8CPack: - Install project: Demo8CPack: Create packageCPack: - package: /home/ehome/Documents/programming/C/power/Demo8/Demo8-1.0.1-Linux.sh generated.CPack: Create package using TGZCPack: Install projectsCPack: - Run preinstall target for: Demo8CPack: - Install project: Demo8CPack: Create packageCPack: - package: /home/ehome/Documents/programming/C/power/Demo8/Demo8-1.0.1-Linux.tar.gz generated.CPack: Create package using TZCPack: Install projectsCPack: - Run preinstall target for: Demo8CPack: - Install project: Demo8CPack: Create packageCPack: - package: /home/ehome/Documents/programming/C/power/Demo8/Demo8-1.0.1-Linux.tar.Z generated.

此时会在该目录下创建 3 个不同格式的二进制包文件:

[ehome@xman Demo8]$ ls Demo8-*Demo8-1.0.1-Linux.sh Demo8-1.0.1-Linux.tar.gz Demo8-1.0.1-Linux.tar.Z

这 3 个二进制包文件所包含的内容是完全相同的。我们可以执行其中一个。此时会出现一个由 CPack 自动生成的交互式安装界面。

完成后提示安装到了 Demo8-1.0.1-Linux 子目录中,我们可以进去执行该程序:

[ehome@xman Demo8]$ ./Demo8-1.0.1-Linux/bin/Demo 5 2Now we use our own Math library.5 ^ 2 is 25

关于 CPack 的更详细的用法可以通过 man 1 cpack 参考 CPack 的文档。

将其他平台的项目迁移到 CMake

CMake 可以很轻松地构建出在适合各个平台执行的工程环境。而如果当前的工程环境不是 CMake ,而是基于某个特定的平台,是否可以迁移到 CMake 呢?答案是可能的。下面针对几个常用的平台,列出了它们对应的迁移方案。

autotools

  • 可以将 autotools 系的项目转换到 CMake,这个工具的一个成功案例是 KDE 。
  • 可以转换使用 automake 的 KDevelop 工程项目。

qmake

  • 可以转换使用 QT 的 qmake 的工程。

Visual Studio

  • 可以根据 Visual Studio 的工程文件(后缀名是 .vcproj 或 .vcxproj)生成 CMakeLists.txt 文件。
  • vcproj2cmake 的 PowerShell 版本。
  • 根据 Visual Studio 项目文件生成相应的 “source_group”
    信息,这些信息可以很方便的在 CMake 脚本中使用。支持 Visual Studio 9/10 工程文件。

CMakeLists.txt 自动推导

  • gencmake 根据现有文件推导 CMakeLists.txt 文件。
  • CMakeListGenerator 应用一套文件和目录分析创建出完整的 CMakeLists.txt 文件。仅支持 Win32 平台。

其他

  • :Eric S. Raymond、Timothee Besset、Zed A. Shaw 等大神力荐的项目架构工具。和 CMake 的最大区别是使用 Python 作为执行脚本。
你可能感兴趣的文章
Oracle的时区
查看>>
oracle 时区
查看>>
oracle sysdate,current_date,current_timestamp
查看>>
java轻松开发http server
查看>>
JDK6.0的新特性:轻量级Http Server
查看>>
Http协议客户端的JAVA简单实现
查看>>
ava URLConnection 总结
查看>>
HTTP 文件上传的基本原理
查看>>
java System.in 使用
查看>>
递归倒序输出字符串
查看>>
临近毕业,图像类SCI源刊哪本审稿快?
查看>>
【每日一算】二分查找
查看>>
【每日一算】旋转有序数组
查看>>
【每日一算】两数之和
查看>>
深入理解Mysql索引底层数据结构与算法
查看>>
B+tree结构详解
查看>>
B+树算法在mysql中能存多少行数据?
查看>>
分割tomcat下catalina.out文件
查看>>
【Docker】centos7安装/卸载docker并配置镜像加速
查看>>
【Docker-2】Docker组成和原理
查看>>